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Abstract

Colorectal cancer is the third most prevalent cancer in the world.  If detected at an
early stage, treatment often might lead to cure.  As prevention is better than cure,
epidemiological studies reveal that having a healthy diet often protects from pro-
moting/developing cancer.  An important consideration in evaluating new drugs
and devices is determining whether a product can effectively treat a targeted
disease.   There are quite a number of biomarkers making their way into clinical
trials and few are awaiting the preclinical efficacy and safety results to enter into
clinical trials.  Researchers are facing challenges in modifying trial design and
defining the right control population, validating biomarker assays from the bio-
logical and analytical perspective and using biomarker data as a guideline for
decision making.  In spite of following all guidelines, the results are disappointing
from many of the large clinical trials.  To avoid these disappointments, selection of
biomarkers and its target drug needs to be evaluated in appropriate animal models
for its toxicities and efficacies.  The focus of this review is on the few of the
potential molecular targets and their biomarkers in colorectal cancers.  Strengths
and limitations of biomarkers/surrogate endpoints are also discussed.  Various
pathways involved in tumor cells and the specific agents to target the altered
molecular biomarker in biomolecular pathway are elucidated.  Importance of emerging
new platforms siRNAs and miRNAs technology for colorectal cancer therapeutics
is reviewed.
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Introduction

Cancer is a group of diseases characterized by uncon-
trolled growth and spread of abnormal cells.  It is caused by
both external and internal factors.  These causal factors may
act together or in sequence to initiate/promote cancer.  In
spite of knowing more than ever about the genetic and cellu-
lar events that accelerate or inhibit cancer induction, cancer
is still the number one health concern of western countries.
Colon cancer is the third most common disease in the United
States, prevalent in both men and women.  Globally, colon
cancer is the fourth most common cancer in men and the
third most common cancer in women.  In the USA, as per the
statistics of the National Cancer Institute of 2007, there are
112 340 new cases of colon cancer, 41 420 new cases of rectal
cancer and 52 180 deaths from both cancers combined.  In
the United States, average-risk patients account for approxi-

mately 75% of all colorectal cancers and include persons older
than 50 years with no other known risk factor; moderate-risk
patients account for 15%–20% of all colorectal cancers and
include those with a positive family history of colorectal
adenomatous polyps or cancer; and high-risk patients ac-
count for 5%–15% of all colorectal cancers and include those
with familial adenomatous polyposis (FAP), hereditary
nonpolyposis colorectal cancer or long-standing inflamma-
tory bowel disease[1].  The majority of colorectal cancers are
thus nonhereditary and sporadic, which makes early detec-
tion important.  Most of the cases are identified at advanced
stages, rendering curative treatment impossible.  Hence, atten-
tion has most focused on screening for targets to aim through
chemoprevention to reduce the number of colorectal cases.

Chemoprevention strategies can be benefited from obser-
vations linking the identification of intermediate/surrogate
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biomarkers or various nutrients/drugs with specific cancer re-
lated molecular targets.  In the last few years, genetic informa-
tion about cancer, molecular signaling and metabolic pathways
has been translated into therapies that target specific molecules
for prevention.  Developing new technologies to provide knowl-
edge of SiRNA’s, microRNA’s and piRNAs  functions  can
form a basis for the development of new chemopreventive
agents, which can intervene at any time during the process of
multistage carcinogenesis to: prevent the initial mutation; block
promotion to premalignant tumors; stop progression from the
premalignant state to in situ carcinomas; or prevent invasion or
metastasis.  As the early stages of tumor promotion and pro-
gression are rate limiting, successful targeting of molecular
events during these stages can have high impact on outcomes.

Molecular biomarkers in colon cancer

Recent advances in cancer pathogenesis help us in unrav-
eling the vital/valid molecular biomarkers involved in colon
carcinogenesis.  Identification/discovery of molecular
biomarkers ranges from exposure assessment, risk assessment
and management to clinical trials.  This can help us in develop-
ing/discovering novel therapeutic interventions, preventive
strategies and agents.  Along with these, there is also a need to
develop and validate molecular biomarkers reflective of expo-
sure and risk from etiological factors and to use these biomarkers
for the design and implementation of prevention strategies in
community settings.  There are sub-sets of high-risk people
within populations who are most susceptible to disease.  Thus,
methods that can identify these high-risk individuals with high
specificity and selectivity will greatly facilitate the implementa-
tion of a spectrum of targeted prevention techniques directed
towards reducing individual risk.  Technologies genomics,
proteomics and recent developments in miRNAs are guiding us
through the development of agents which are able to target the
biomarkers.  A link between miRNAs function and cancer patho-
genesis is supported by studies examining the expression of
miRNAs in clinical samples.  miRNAs are emerging as a new
class of genes involved in cancer.  Knowledge about micro
RNA’s and its specific functions offers opportunities to target
genetic or epigenetic changes that influence cancer risk.  As of
now, very little information is known about miRNA’s, a more
detailed understanding of micro RNA functions is required to
identify and manipulate the molecular targets for cancer
prevention.  Specific molecular processes have been targeted
for therapeutic intervention, including growth factor receptors,
proliferation signaling, cell cycling, apoptosis, angiogenesis,
the immune system, etc.  Many cancers are characterized by
alternations in certain signaling pathways, and identification of
the aberrant pathway in a particular patient allows for targeted

therapy to that specific pathway.

Surrogate end point in colon cancer

Surrogate endpoint markers provide unique opportuni-
ties to understand the cancer development and also to evalu-
ate affectivity of agent’s intervention.  All the biomarkers
will not achieve the status of surrogate endpoints, only a
subset of biomarkers may achieve surrogate endpoint status.
Provisional evaluation is not done until it is evaluated in
controlled clinical trials or observational investigations (in
large populations) for its therapeutic intervention and safety.
Based on epidemiologic, therapeutic, pathophysiologic and
due to clinical benefit, adenomas are taken as surrogate end-
points in colon cancer.  Removal of adenomatous polyps has
been shown to reduce the risk of development of colorectal
cancer.  However, intervention using adenomas as endpoint
may not be fruitful, because colonic polyps often take sev-
eral years to develop and become adenomatous carcinomas.
Due to these limitations of adenomas as surrogate biomarkers
of cancer, much interest is currently shown on research in
the use of surrogate endpoints that are altered early in
colorectal carcinogenesis, prior to polyp formation, to pre-
dict the clinical effectiveness of chemopreventive drugs.  It
takes 10–20 years for a normal colonocyte to undergo mo-
lecular changes and to be clinically detected as a neoplastic
lesion.  Rather, ACF (Aberrant Crypt Foci) can be used as
endpoint in colon cancer.  Aberrant crypts are postulated to
be the earliest identifiable potential precursors of colon
cancer.  Analysis of aberrant crypts may facilitate the study
of the early pathological and molecular changes that pre-
cede adenoma to colon cancer.  The observation of mani-
fold/more aberrant crypts in the mucosa from patients and
who are at high risk for colon cancer, compared to the mu-
cosa from autopsy patients without any signs of colon can-
cer suggests that an increased frequency of these very early
lesions predisposes to colon cancer [2,3].  The progression of
adenoma to carcinoma is one of the routes to colon cancer.
Therefore, aberrant crypt foci may eventually evolve into
polyps and, subsequently, cancer.  Hence, it provides a
simple and economical tool for preliminary screening of po-
tential chemopreventive agents, and it allows a quantitative
assessment of the mechanisms of colon carcinogenesis.
Changes in biomarkers can reveal how far a lesion has
advanced.  Based on the mechanism of the drug, alterations
in other biomarkers can tell whether a drug has reached the
target cells.  Restoration of normal levels of the biomarkers
by chemopreventive/therapeutic agent can indicate poten-
tial response to the intervention by that agent.  A drug can
act early in the neoplastic pathway to prevent adenoma
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recurrence, but may not show any effect on large adenomas,
so understanding these functions of drugs may help in re-
storing the altered surrogate biomarkers.  As per the biology
of cancer cells, like normal cells, most cancer cells use mul-
tiple redundant intracellular signaling pathways to ensure
the maintenance and viability of functions critical to their
survival.  Understanding these pathways in detail may help
in the identification of such markers.  The most important
studied/altered molecular markers/targets involved in signal
pathways which can be considered under surrogate end-
points in colon carcinogenesis are COX-2, iNOS, HMG-CoA,
RXR-α, ER-β, β-catenin, 5-LOX, and STAT3.  Effect of differ-
ent agents on these molecular markers/targets will influence
the endpoint markers in colon carcinogenesis.

COX-2  COX-1 and COX-2 are the two isoforms of the
COX enzyme [4, 5].  COX-1 and COX-2 catalyze the conver-
sion of arachidonic acid to eicosanoids, namely prostaglan-
dins and thromboxanes via endoperoxides.  The COX-1
isoform synthesizes prostaglandins that are required for
normal physiologic function l ike gast rointest inal

cytoprotection and platelet activity.  COX-2 is not detect-
able in most normal tissues; however, it is induced at sites of
inflammation by cytokines, growth factors, tumor promoters
and other agents.  Both isoforms are also responsible for the
synthesis of prostaglandin E2 (PGE2),

 and there is some evi-
dence for a correlation between increased levels of PGE2 and
tumorigenesis [6–8].  Prostaglandins, especially prostaglan-
din E2, appear to be important in the pathogenesis of cancer
secondary to the effects on mitogenesis, cellular adhesion,
immune surveillance and apoptosis.  PGE2 exerts its actions
by binding to one (or a combination) of its four subtypes of
receptor (EP1, EP2, EP3 and EP4).  Malignant tissues have
been found to over-express prostaglandins when compared
with normal tissues [9–11].  COX-2 is a key mediator in the
development of colon cancer.  COX-1 and COX-2 differ in
expression and regulation in different tissues.  COX-1 is con-
stitutively expressed in the colon, but COX-2 is inducible
and markedly up-regulated in many colon cancers [12, 13] (Table
1).  COX-2 is found to be associated with chronic
inflammations.  In several animal and human models, the

Table 1.  Expression pattern of molecular markers of colon carcinogenesis during the normal, initiation, adenoma and adenocarcinoma stages.

Molecular  Target Normal ACF Adenoma Adenocarcinoma

     COX-2

Preclinical - +a +++ ++++

Clinical - ? +++ ++++

     iNOS

Preclinical - +a ++ ++++

Clinical - ? ++ -

     HMG-CoA

Preclinical + + +++ ++++

Clinical + + ++ +++

     RXR-α

Preclinical +++++ ++ + -

Clinical +++++ ? + -

     ER-β

Preclinical + ++ +++ +++++

Clinical + - +++ +++++

     β-Catenin

Preclinical + ++ +++ +++++

Clinical + ++ +++ +++++

     5-LOX

Preclinical - ++ +++ +++++

Clinical - ? +++ +++++

     Stat-3

Preclinical + - +++ +++++

Clinical + - +++ +++++

a   -   Minimally expressed in ACF (Aberrant Crypt Foci),

?   -    Not yet evaluated
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inhibition of prostaglandin formation by blocking COX-2
appeared to show protective effects against many types of
cancers, including breast, colon, esophageal, lung, skin and
head and neck cancers.  Several mechanisms have been pro-
posed to explain the important role of COX-2 in tumorigen-
esis [14].  Increased COX-2 gene expression has been shown
in human colorectal adenocarcinomas and in carcinogen in-
duced rat colonic tumors [12, 13, 15–17].  Even COX-2 is known
to modulate angiogenesis [18, 19].  Notable over-expression of
COX-2 protein in tumors located in the rectum was observed
when compared with other locations in the colon [20].  Certain
studies have explained that COX-2 expression is unrelated
to overall patient survival [21].  Recent observations of COX-2
expressions with colon tumor samples from patients explain
a progressive over-expression of COX-2 during stepwise
sequence from adenoma to carcinoma [22].  Still no clear evi-
dence is available on the expression patterns of COX-2 at
different stages (I – III) of colon cancer and its effect on
progression of carcinogenesis.  In depth detailed study is
necessary to improve the efficacy of drugs to target COX-2.
Due to various evidences of its oncogene actions, suppres-
sion of COX-2 is now a crucial target for control of tumors
with chronic/persistent inflammation (Figure 1).

Epidemiological and rodent studies have documented a
protective effect of non-steroidal anti-inflammatory drugs
(NSAIDs) in preventing colorectal cancer.  NSAIDs showed
inhibition of COX-2 activity and PGE2 synthesis both in vitro

and in vivo [23, 24].  We have strong clues from recent findings
that non-steroidal anti-inflammatory drugs (NSAIDs), COX-2
inhibitors in particular, are effective chemopreventive agents
in colon cancer [25].  The concern over gastric toxicity associ-
ated with aspirin (NSAID) use led to efforts to develop COX-2
specific inhibitors (COXibs) [26, 27].  Though COXibs are found
to be better drugs, several large randomized controlled trials
provided unequivocal evidence of the cardiotoxicity of
COXibs, which led to withdraw COXibs from US market [28–31]

Celecoxib selective COX-2 inhibitor is used to treat FAP and
is still in use.  Celecoxib is approved as an adjunctive
(secondary) treatment among patients with FAP.  Celecoxib
is found to be effective in combination with DHA (fatty acid)
in HCA-7 human colon cancer cells [32].  Different phase (I/II/
III) clinical trials are being carried out using celecoxib indi-
vidually and also in combination with other drugs (curcumin,
Docetaxel, prednisolone, Zoledronate, Eflornithine) in colon
cancer patients with different case histories to study its
efficacy, reduce its toxicity and for better outcome.  But there
is compelling evidence for the cancer-chemopreventive po-
tential of aspirin and other NSAIDs [22,29, 32,33].  A recent re-
port on use of (Classical NSAID) aspirin in men and women

with differential expressions of COX-2 showed varied re-
sponses on colorectal cancer.  Regular use of aspirin ap-
peared to reduce risk in those patients with high levels of
COX-2 expression, but there was no effect shown on pa-
tients with very low/no COX-2 expression [22].  The differ-
ences between colon cancers that express high or low levels
of COX-2 have to be investigated, and this understanding
can form the basis for clinical implications.  This study can
likely spur research to identify who is at risk of COX-2-ex-
pressing colon cancers and for new drugs that can provide
benefits for colon cancer without the risks associated with
the drug.  Nitric-oxide releasing nonsteroidal anti-inflamma-
tory drugs (NO-NSAIDs) are other promising alternatives to
aspirin in chemoprevention of colon carcinogenesis, which
possess the beneficial effects of parent compound (aspirin)
and at the same time are devoid of side effects [34–36].  NO-
aspirin and NO-indomethacin are experimented against the
development of colon adenocarcinoma in an established
animal tumor model.  These agents suppress both invasive
and noninvasive adenocarcinomas of the colon [37].  Various
mechanistic pathways are suggested for the beneficial ef-
fects of NO-NSAIDs [38–40].  Functional studies of prostag-
landin-related polymorphisms, including biochemical stud-
ies that evaluate the response to NSAIDs and COXibs [41],
will provide information on possible subgroups of individu-
als who might be more susceptible to the toxic effects of either
COXibs or standard NSAIDs.  NO-NSAIDs and COXibs need
to be further evaluated for their eventual use for human
treatments.

iNOS  Intestinal inflammation is almost invariably ac-
companied by intestinal dysfunction, which constitutes a
major clinical complication.  Current therapy is often inad-
equate due to incomplete knowledge about the mechanisms
causing intestinal dysfunction in intestinal inflammation.
Nitric oxide (NO) may be a key component in this process.
NO is a highly reactive compound that is produced by three
isoforms of Nitric Oxide Synthase (nNOS, eNOS and iNOS).
Under normal physiological conditions, endogenous NO is
produced by the constitutive NOS isoforms, eNOS and nNOS
(neuronal NOS).  These two are important for peristalsis
(nNOS) and maintaining mucosal blood flow (eNOS).  NOS
(iNOS) is expressed in many cells, extravascular resident
leucocytes (macrophages), intravascular and/or infiltrating
leucocytes (neutrophils and monocytes), endothelium, and
parenchymal cells, including intestinal epithelium after ex-
posure to various inflammatory stimuli (lipopolysaccharide
(LPS), tumor necrosis factor (TNF α), or interleukin (IL)-1β.
iNOS, produces large amounts of NO for a limited period of
time and is an element of the innate immunity.  Excessive and
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prolonged NO production has been suggested to cause in-
testinal dysfunction in inflammatory bowel disease (IBD)
and sepsis.  For inflammatory reactions that lead to injury,
the role of NO is controversial, with evidence for pro-inflam-
matory as well as anti-inflammatory effects [42].  NO and its
metabolites have a role in mediating many cytotoxic and
genotoxic effects [43, 44].  Effect of NO on tumor progression is
dependent on the type of cells and activity of NOSs.  Pro-
duction of NO and expression of iNOS has often been de-
tected in several established human tumors [45–50] (Table 1).
However, considering the physiological role of NO, inhibi-
tion of NO generation could have deleterious effects.

It is assumed that chronic inflammation and continuous
exposure to NO produced by iNOS leads to neoplastic trans-
formation, which is a key step in carcinogenesis.  Studies of
iNOS indicate that NO produced by iNOS can initiate and/or
promote tumorigenesis [51,52].  Mice with mutations in both
adenomatous polyposis coli (Apc) and iNos showed fewer
adenomatous polyps in the small and large intestines com-
pared with mice with the mutation in Apc alone [53].  iNos-/- mice
showed decreased incidence of gastric carcinogenesis that is
induced by Helicobacter pylori [54].  These findings identify
iNOS as a target for tumor chemoprevention in colon cancer.
Indeed, iNOS inhibitors reduced azoxymethane-induced colon
cancer and tumorigenesis in Apc-mutant mice and rats [53, 55, 56].
There is a lot of discrepancy in the role of iNOS in tumour
stroma.  By contrast, several similar studies produced con-
flicting results regarding different NOSs and the literature sup-
ports both increasing and decreasing NO signaling as a po-
tential strategy.  Xu et al  demonstrated that delivery of iNOS-
over expressing cells to the peritumoural region resulted in
increased FAS and FAS-ligand expression, and inhibition of
tumor growth in human ovarian cancer and colon cancer xe-
nografts [57].  iNOS by a selective inhibitor, 1400W is found
not to have any effect on cells not expressing iNOS at appre-
ciable level.  Whereas, it is found to inhibit the growth of
human colon cancers as well as of murine breast cancers that
express endogenous iNOS [58].  Further studies are needed to
know what approach can be applied to balance the activities
of various NOSs and target the iNOS in a right way by unrav-
eling the precise mechanisms discrepancies.  Presently, both
treatment strategies to increasing NO signaling and decreas-
ing NO signaling are being tested.  Whereas, pre-clinical stud-
ies indicate that NO downregulation might be of value in
chemoprevention.  Preclinical studies in colon cancer models
are encouraging in prevention of tumorigenesis with iNOS
selective inhibitors.  These studies are in agreement with ge-
netic studies of iNOS knockdown mice but conflicting results in
some iNos-/- mouse studies have also been reported [53, 54, 59, 60].

Because of these contradictory findings, more detailed evalu-
ation in preclinical models will be required prior to the clinical
evaluation of this strategy, keeping in mind the multiple physi-
ological roles of NO.  Whereas, one can trust, based on the
overall literature, NO promotes tumorigenesis when associ-
ated with chronic inflammation, angiogenesis and the growth
of established solid tumors.  However, a detailed study is
needed to understand NO functions in lymphatic system and
in lymph node metastasis.  NO interaction between COX-2
signaling and NO signaling is well documented [61], and this
observation can be utilized in aiming tumor prevention.  A
combination of COX-2 inhibitor and iNOS inhibitor has been
shown to produce a better chemopreventive effect against
colon carcinogenesis [56] (Figure 1).  Combinations of anti-
angiogenic agents and NOS inhibitors might also be more
effective [62].  Exploitation of combination treatments which
target multiple targets may be beneficial.  Still, there are many
gaps to be filled in to efficiently target iNOS.

HMG-CoA reductase  HMG-CoA reductase is the key
regulated step in cholesterol synthesis and represents the
sole major drug target for contemporary cholesterol-lower-
ing drugs.  There are conflicting reports in the literature on
the association between serum cholesterol level and
colorectal cancer.  A low level of cholesterol was observed in
some studies due to metabolic effect of undiagnosed colon
cancer.  Positive and negative associations have been ob-
served at different points in time, prior to the diagnosis of
cancer.  The geographical incidence of colon cancer corre-
lates well with high fat diets [63].  Patients with colon cancer
have high levels of faecal bile acids and cholesterol.  Results
from animal studies also support the significance of fat intake
in colon cancer development [64].  It is thought that faecal bile
acid and cholesterol metabolites may act as promoters, co-
carcinogens or carcinogens in large bowel tumorigenesis.
Cholesterol is an obligatory precursor of the bile acid.  HMG-
CoA reductase is a polytopic, transmembrane protein that
catalyzes a key step in the mevalonate pathway [65], which is
involved in the synthesis of sterols, isoprenoids and other
lipids (Figure 1).  These end products are important for many
different cellular functions.  Acetyl-CoA (citric acid cycle) is
converted to acetoacetyl-CoA.  Acetyl-CoA condenses with
acetoacetyl-CoA to form 3-hydroxy-3methylglutaryl-CoA
(HMG-CoA).  HMG-CoA is reduced to mevalonate by
NADPH.  This reaction occurs in the cytosol.  It is the commit-
ted step in cholesterol synthesis, which is why the enzyme
(HMG-CoA reductase) catalyzing the reaction is a target of
statins.  Blockade of rate limiting step by statins results in re-
duced levels of mavalonate and its down stream molecules (such
as Ras, nuclear lamins, and many small GTP-binding proteins
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such as members of the Rab, Rac, and Rho families) having
significant influences on cellular functions.  HMG-CoA reduc-
tase is observed to be overexpressed in colon cancer cell lines,
which makes it a potential molecular target for colon cancer
prevention/treatment [66, 67] (Table 1).  Statins also exert
immunomodulatory and anti-inflammatory effects, which pro-
vide them with potential anti-tumor effects [68, 69].

HMG-CoA reductase inhibitors such as lovastatin,
atorvastatin, pravastatin and simvastatin have been in use
for the past 15 years for their efficacy in reducing cardiovas-
cular diseases.  These studies suggest merits of statins use
in chemoprevention.  Whereas, major randomized controlled
trials demonstrated no association between the use of HMG-
CoA reductase inhibitors and the risk of fatal and nonfatal
cancers [70].  A recent large study, the Molecular Epidemiol-
ogy of Colorectal Cancer (MECC) study, which included al-
most 4000 people, showed that statin use for a period of
more than 5 years was associated with a 47% reduction in
the risk of colorectal cancer [71].  Eight previous, small pro-
spective studies found no/weak statistically significant as-
sociation between statin use and the risk of colorectal can-
cer and significantly lowered risk with specific statins or
their dose levels [72–79].  Although these controversies exist
on statins effect on colon cancer, many preclinical data sup-
port the positive effects of statins in reducing colon cancer.

Different statins were successful in inhibiting colorectal car-
cinogenesis in rodent models [80–86].  Anti-proliferative ef-
fects of HMG-CoA inhibitors on different cancer cell lines
are through two cyclin dependent kinases and Rho small
GTPases, geranylgeranylated by GGPP [87–90].  Statins are
tested positive in combination with cytotoxic drugs, which
yield synergism in preclinical models [86, 91] Because HMG-
CoA reductase inhibitors exhibit diverse effects on various
aspects of carcinogenesis in vitro and in vivo, they deserve
further investigation in chemoprevention and therapeutic
clinical trials.  Numerous clinical trials are under way to as-
sess whether these actions will translate into significant clini-
cal benefit.  Hence, there is optimism for the use of HMG-
CoA reductase inhibitors as anti-neoplastic agents.

RXR-α  α  α  α  Retinoids comprise a family of polyisoprenoid
lipids consisting of vitamin A and its derivatives.  Vitamin A,
and its natural and synthetic analogs are found to interact
with the RAR and RXR receptors.  These compounds exert
their multiple functions through these receptors.  RXRs are
found to have important cross interactions between RXR
and other 20 nuclear receptors.  RXR forms heterodimers
with RAR, VDR, TR, etc.  through which they transmit the
hormonal signals by interacting with co-activators and co-
repressors to regulate genes [92–94].  RXR-α is one of the
retinoid X receptors (RXR-α, RXR-β, RXR-γ) and belongs to

Figure 1.  Molecular markers and targets in colorectal cancer
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a member of the nuclear receptor super family which regu-
lates development, organ physiology and cell proliferation.
These receptors are altered distinctly in different tissues
during carcinogenesis, providing evidence of unique func-
tions of each receptor in different tissues.  The expression
patterns of these receptors in carcinogenesis provide prog-
nostic information, as these receptors have a prominent role
in actions of gene expressions when interacted by a ligand.
Among the RAR and RXR receptor subtypes, RXR-α mRNA
was observed to be expressed at the highest levels in vari-
ous normal cell types of gastric mucosa.  Due to generally
higher levels of RXR-α expression, it is identified to possess
more vital functions than other RAR receptor subtypes in
normal gastric mucosa.  As RXR-α is known to interact with
other receptors (Vit D, PPARγ), it may also play a physiologi-
cal role in the colon.  This can be supported by the investi-
gations of Kane et al.  that among all the three receptors (RXR-
α, RXR-β, RXR-γ) tested, a significant decrease in RXRα

expression was observed in human malignant colon tissues,
compared with non-neoplastic tissue.  RXR-α decreased ex-
pression was noted in skin and gastric cancer too [95, 96]

(Table1). Genetic studies of (RXRα1/-) knockdown mice re-
ported a significantly enhanced susceptibility to 2,4,6-
trinitrobenzene sulfonic acid (TNBS)-induced colitis com-
pared with their wild-type littermates [97].  RXR has been shown
to have a role in decreasing colonic inflammation in mouse
models [97].  In addition, RXR-α is found to induce β-catenin
proteasomal degradation, replacing the function of APC and
shows an interaction of RXR-α with β-catenin [98].  RXR-α
may exert chemopreventive or chemotherapeutic effects in
the colon via the regulation of β-catenin [98].  Dysregulation
of β-catenin is a common outcome of mutations observed in
colorectal cancer, resulting in β-catenin induced activation
of oncogenes [98].  RXR agonists have been shown to en-
hance interaction between RXRα and β-catenin, resulting in
more efficient β-catenin  degradation and subsequent
antiproliferative effects [98] (Figure 1).  One of the novel
functions, RXR-α acts as a carrier for nucleocytoplasmic
translocation of orphan receptors [99].  In view of its functions,
RXR-α is considered to be an attractive molecular target in
colon cancer.  Collectively, these results raise the possibility
that RXR agonists might have a beneficial role as a therapy
in colon carcinogenesis, where activated wnt signaling is
believed to contribute to tumorigenesis.

Rexinoids are ligands/agents that selectively bind to re-
tinoid X receptors (RXRs) [100–103].  They are found effective
both in prevention and treatment.  Most notable rexinoids
are bexarotene (LGD1069), LG100268, VTP 194204 studied in
other cancers.  Bexarotene is the first synthetic RXR-selec-

tive agonist to enter for clinical trials for cancer therapy.  It is
shown to have minimum binding to RARs compared to other
rexinoids.  It is proved to be effective in preventing ER– and
ER+ mammary tumors [104, 105].  It is noted that bexarotene is
well tolerated without any classiccal signs of traditional ret-
inoid toxicities.  Although it is tested for breast cancer, no
studies are found on colon carcinogenesis using this
compound.  LG100268, VTP 194204 are potent selective RXR
agonists with no biologically relevant binding to RARs,
and have been identified to be more effective than bexaro-
tene [106, 107], but they needed to be tested in colon cancer
animal models before being taken for clinical studies.  RXR-
specific agonists AGN195362, AGN195456,  AGN195741,
AGN196060, and AGN196459 were tested with colon cancer
cell lines and observed to induce growth inhibition through
β-catenin degradation in APC independent manner [98].  This
data indicate the role of RXRs in ligand mediated protein
degradations in vitro; however, it needs to be validated in
animal models.  Rather, induction/elevation of RXR-α levels
through specific ligands can be an efficient method in treating
colorectal cancer.  β-ionone is an end ring analog of β-catrotene,
which is naturally present in various vegetables.  The study
conducted in our lab to assess the chemopreventive poten-
tial of β-ionone, a naturally-occurring agent, against chemi-
cally-induced colon carcinogenesis in F344 rats showed sig-
nificant suppression of carcinogen-induced colonic ACF
formation.  In-vitro studies, showed cell growth suppression,
induction of apoptosis and also induced RXR-α expression
(Unpublished data).  Identification of various natural and
synthetic drugs selective to RXR-α can be beneficial in pre-
vention/treatment of colon carcinogenesis.

ER-β  β  β  β  ER-β and ER-α nuclear receptor transcription fac-
tors are two forms of estrogen receptors which have distinct
expression patterns in human tissues [108].  Estrogens
(estradiol, estriol and estrone) are the steroid hormones which
exert their actions through these receptors.  ER is also found
attached to the cell membrane and is involved in signaling
by forming complexes with G proteins, striatin, receptor ty-
rosine kinases (eg  EGFR and IGF-1) and non-receptor ty-
rosine kinases and Cav-1 [109–112].  Several epidemiologic stud-
ies have suggested that CRCs are influenced by steroid hor-
mones [113–116].  Endogenous estrogen production is liked to
enhancement of growth and metastases of CRCs in female
patients [117].  Estrogen Replacement Therapy studies ex-
plain the protective effect on colon cancer risk, whereas in
these studies, a mostly protective effect is shown by the
progesterone rather than estrogen [118–122].  Recent re-analy-
sis of world wide data on the relationship between hormone
replacement therapy and breast cancer showed that the risk
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of this cancer may be increased in women who are taking
estrogen [123].  Estrogen receptors are reported to be present
in colorectal tissue and colorectal adenocarcinoma and ER-β
is found to be the predominate receptor expressed in colonic
tissue [124–130] (Table 1).

Various reports suggest presence of five different
isoforms of ER-β in colon and colon cancer, due to which,
the complexity to determine ER mediated functions has
increased.  Estradiol treatment was found to significantly
enhance the growth of colon cancer cells injected in mice,
and the resulting tumors were notably larger in female than
in male mice [131].  As most of the actions of estrogens seem to
be exerted through the respective receptors [132,133], it sug-
gests that the estrogen receptor may be important in regulat-
ing colorectal cancer risk associated with these hormones [134].
Most of the reported data on colorectal cancer suggest the
changes in expression patterns of ER-β, rather than ER-α,
which point that ER-β gene to be more important than ER-α
in the etiology of colorectal cancer [135–139].  ER-α is certainly
associated with more differentiated tumors in breast and other
cancers, while the evidence that ER-β is involved is
controversial.  ER-β protein levels are reportedly lower in
colon tumors than normal colon tissue, and loss of ER-β is
linked to its protective role [135–139].  Whereas, certain reports
suggest that increase in levels of ER-β in colon tumorigen-
esis is associated with advanced stages of colon cancer and
tumor cell differentiation [140].  ERβ-/- knock out mice studies
reported a role of ER-β in the organization and architectural
maintenance of the colon, whereas it could not prove that an
exact lack of ER-β is causing hyperproliferation, as the cells
were lost due to shedding [141].  Hence, ambiguity on the
protective role of ER-β still exits.

Taken the differential functions of estrogen receptors into
consideration,  a class of drugs termed “selective estrogen
receptor modulator” (SERMs) were developed (Figure 1).  The
concept of selective estrogen receptor modulator is based
on the ability to selectively activate (or block) one type of
ER or to promote ER interactions with different proteins,
such as transcriptional co-activator or co-repressor proteins.
Additionally, the different estrogen receptor combinations
respond differently to various antagonists, and some com-
pounds have partially agonistic and antagonistic effects,
depending on the tissue [142].  One such antiestrogens or
SERMs which is used to inhibit the growth of colon cancer
and is widely used is anti estrogen tamoxifene, which has
shown good application in colon cancer cells and is also
efficient in inhibiting liver metastates from CRCs in animal
models [143].  Whereas, the effect of tamoxifene on CRC in
different observational and clinical studies were not encour-

aging either, there was no effect or there was a modest in-
crease/increased risk of CRC [144–146].  Due to tamoxifene as-
sociated side effects, another SERM, raloxifene, is tested for
its efficacy in cancers and has been approved by FDA for
prevention of osteoporosis.  It is found to be safe when
used as a preventative chemotherapy for women judged to
have a high risk of developing breast cancer or who have
breast cancer [147, 148].  The accumulated results from MORE,
CORE and RUTH studies suggest that raloxifene use is safe
and does not appear to increase the risk of CRC [149, 150].
Raloxifene has shown to have biological effects on CRC ERâ
positive cell lines [151].  Our observations with raloxifene on
colon cancer prevention showed good inhibition of AOM
induced tumors in rats and growth inhibition of colon cancer
cell lines (Data not yet published).  Droloxifene, idofene and
toremifene are similar SERM agents, but they still need to be
experimented to be considered.  Another chemotherapeutic
anti-estrogen, ICI 182,780 (Faslodex), which acts as a com-
plete antagonist, also promotes degradation of the estrogen
receptor, even this can be considered experimental in colon
cancer prevention.  ER-β isoforms predominate in the colon
and each isoform needs to be evaluated for its ligand depen-
dent and independent effects on cell growth, development or
death, as the physiological significance of these ER isoforms is
still unknown [152, 153].  Valuable information can be achieved by
expanding knowledge on estrogen effects by determining the
ER-β expression in normal colon and cancerous tissues in
patients (men and women) below 40 years and also of ER-β
isoforms association with different responses to estrogens
and anti-estrogens.  This knowledge may help in the better
designing of drugs to counteract the progression of colon
carcinogenesis.

ββββ-catenin  β-catenin is a subunit of the cadherin protein
complex.  β-catenin is found at the plasma membrane in as-
sociation with cadherins, in association with the tumor sup-
pressor promoter APC and microtubules, in the cytoplasm
and in the nucleus.  So, it cannot be presumed that it works
only in the nucleus to “signal” a response, it is a multifunc-
tional protein involved in cell adhesion, signaling and many
more [154, 155].  β-catenin is shown to regulate pre-mRNA splic-
ing [156].  There are a number of reports pertaining to the
functional interactions between nuclear receptors and the
canonical, Wnt/β-catenin signaling pathway cascade [157].
β-catenin seems to interact with various nuclear receptors
and it is shown that genetic interactions between ER and β-
catenin may promote growth and tumorigenesis in eye of
drosophila [157, 158].  The significance of this data remains to
be experimented in other systems to give a better idea of the
functions and interactions of β-catenin with nuclear receptors.
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The deregulation of β-catenin has been found to lead to
various forms of cancer, particularly colorectal cancer [159].
Normal function of APC in combination with glycogen syn-
thase kinase 3β and axin regulates free cytoplasmic β-catenin
levels by binding to and targeting β-catenin for degradation
by ubiquitination-dependent proteolysis [160–165].  This regu-
lates the availability of free β-catenin for binding with the TCF-
LEF family of transcription factors in the nucleus [166].  Muta-
tions in APC or β-catenin can result in the failure of β-catenin
to be degraded and they are retained in the cytoplasm of
cells which is often seen in colon cancer [159, 167–169] (Table 1).
Subsequently, there will be an increase in β-catenin-TCF
complex formation, causing alterations in gene transcription
(myc, cyclinD1, c-jun, Tcf-1, Lef-1, conductin/axin2 MMP7),
leading to carcinogenesis [170, 171].  Somatic mutations in genes
in the β-catenin pathway are found in >80% of colon cancers
(FAP and sporadic disease), and aberrant beta catenin activ-
ity is known to play an early and causative role in colon cancer.
This may occur by mutations in the APC protein, axin or in the
β-catenin itself, which leads to dysregulation of β-catenin turn-
over and activation of genes involved in tumorigenesis [166, 167].
As these mutations are exclusively found in colorectal
cancers, β-catenin is considered to be a potential molecular
target in colon carcinogenesis [170, 171].  A study with folic acid
explains that certain dietary supplements can enhance the
tumor formations through β-catenin accumulations.  Dietary
supplementation of folic acid is found to enhance colorectal
carcinogenesis through a distinct APC mutated pathway [174]

and this explains that folate can act as tumor inhibitor only
under particular settings with a specific genetic status of the
disease.  A recent publication from an outcome of clinical
study also supports the findings that folic acid did not show
any effect in preventing colon cancer rather it was observed
to enhance colon cancer [175].  May be more specific study
involving the patients having colon tumors with specific
genetic aberrations can help in completely understanding
the role of folic acid.

Previous results demonstrated that PPAR-gamma and
RXR-alpha may interact with and stabilize a beta-catenin tran-
scription complex in some colon malignant cells.  The inter-
action of ligand, such as NSAIDs with PPAR-gamma may
induce the conformational change of the receptor, leading
the inhibition of transactivation function of beta-catenin,
finally blocking Wnt/beta-catenin signaling [176].  Reports
suggest the interaction of RXR receptors with β-catenin in-
duce degradation of β-catenin in colon cancer cell lines [98].
This mechanism may have a significant value to the devel-
opment and selective use of rexinoids and NSAIDs-like drugs
as cancer chemopreventive and chemotherapeutic agents.

A number of compounds that inhibit the beta-catenin path-
way and show selective toxicity toward cancer cells have
been identified.  Currently, there are over 20 anti-sense oli-
gonucleotides in clinical trials [172, 177].  Diverse β-catenin an-
tagonists have been developed [173, 176, 178] (Figure 1).The most
advanced compounds, the PRLX 8025 compound series, are
currently in pre-clinical efficacy testing in animal models of
colon cancer [179].  The development of small molecules which
selectively target beta catenin interaction that transmits the
cell proliferative signal of beta catenin, while leaving alone
the other activities of beta catenin required for normal cell
growth, may be a viable option for treatment and prevention.
The development of drugs that selectively target the nuclear
entry or exit of regulatory proteins altered in cancer may be
another option for treatment and prevention.

5-LOX  Lipoxygenase (LOX) is one of the two important
enzyme classes that metabolize polyunsaturated fatty acids
and affect carcinogenesis.  Cell membrane phospholipids
are converted to arachidonic acid, which serves as a sub-
strate that gives rise, in turn, to two powerful and potentially
damaging classes of inflammation mediators, known as
eicosanoids: the prostaglandins and leukotrienes.  Arachi-
donic acid release and production of eicosanoids are prereq-
uisites for inflammation.  The inflammatory prostaglandins
and leukotrienes are formed by the action of cyclooxygenase
(COX-2) and lipoxygenase (5-LOX) enzymes, respectively [180].
This forms the crux of dual inflammatory pathways: COX-2
and 5-LOX.  Many reports documented the clear evidence of
COX pathway generating inflammatory prostaglandins and
its role in colon carcinogenesis.  But medical research has
largely ignored the potentially damaging effects of 5-LOX,
the enzyme that forms the second branch of the dual arachi-
donic acid inflammation pathways.  Most emphasis was given
to block COX-2 activity, ignoring the effects of 5-LOX, which
may actually increase the 5-LOX levels, worsening the
inflammation.  This may be due to shifting of arachidonic
acid toward synthesis of leukotrienes through the 5-LOX
pathway when COX-2 is blocked, which plays a vital role in
inflammation.  COX-2 inhibition alone was ineffective in slow-
ing the progression of clinically diagnosed cancers.  It is
clearly evident from animal models and in vitro studies that
expression of 5-LOX appears to be occasionally upregulated
during neoplastic transformation [181–183] (Table 1).  Expres-
sion of 5-LOX has been characterized in early colon neo-
plasms and found upregulation of 5-LOX in colon polyps
and colon cancer [184–187].  These observations provide evi-
dence that 5-LOX plays a role in colon cancer development
and may be an early target for chemoprevention of colon
cancer.
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Leukotrienes are involved in cell survival signals which
indicate proliferative properties of a cell [188].  5-LOX is ob-
served to be involved in exerting both anti and pro inflamma-
tory activities.  The other bioactive compounds which need
to be studied further to understand the network of anti and
pro inflammatory mediators are lipoxins and resolvins.  Bio-
synthesis of LO-derived eicosanoids (Lipoxins) occurs
through different pathways.  One of the pathways involves
5-LOX in the formation of metabolically active products
(lipoxins), LXA4, LXB4, or 15(R)-HETE for 15-epi-LXs (aspirin
triggered LXs) (LTA4/LTB4).  These lipoxins are known for
promoting the resolution of inflammation and also develop-
ment of tumors.  Biologically active metabolites of the 5-
LOX cascade are LTB4 and the so-called cysteinyl LTs (LTC4,
LTD4, and LTE4), which are proinflammatory mediators.
Cysteinyl leukotrienes (CysLT) are important proinflammatory
mediators, which exert effects on several cellular functions,
including smooth muscle contraction, bronchial mucus pro-
duction and chemotaxis [189].  Recently, it has been shown
that even these products may contribute to the development
of colon and several other human tumors [188, 190, 191].  Lipoxins
are high affinity antagonists to the cystienyl leukotriene re-
ceptor 1 (CysLT1) to which several leukotrienes (LTC4, LTD4

and LTE4) mediate their smooth muscle contraction and eosi-
nophil chemotactic effects.  Also, pharmacological evidence
provides the modulation of CysLT1 mediated inflammatory
processes in vivo by antiinflammatoty lipids [192].  5-LOX is
even involved in E series resolvins (anti-inflammatory), sug-
gesting its protective role in addition to its leukotriene
production.  These results are confirmed with recent reports
of exacerbated inflammatory responses in 5-LOX deficient
mice [193, 194].  These findings are contradictory and explain
for a further insight into actual underlying mechanisms and
the networks involved during inflammation and also at the
resolution of inflammation, as these lipoxins are formed dur-
ing the resolution of inflammation process.  5-LOX protec-
tive mediation is through lipoxins and resolvins.  As 5-LOX
is not the only pathway for the production of these anti-
inflammatory components, use of 5-LOX inhibitors can prove
beneficial (Figure 1).  Thus, as a therapeutic approach, in-
hibitors of 5-LOX may come without many side effects.  Each
of these proinflammatory mediators activates specific sig-
naling mechanisms.  The potential role of lipoxins and
resolvins in preventing chronic inflammation needs to be
investigated.  The use of experimental animal models in co-
lon cancer will help to underpin the relative importance of
lipoxins and resolvins in colon carcinogenesis.  Data avail-
able on Lipoxins and resolvins as promoting the resolution
of inflammation urge the need to develop agonists of lipoxins

and resolvins.  Nevertheless, drugs able to block the lipoxygenase
pathway, 5- lipoxygenase inhibitors or leukotrienes receptor
antagonists, although they are included among the effective
therapies of asthma, appear to be an insufficient single thera-
peutic approach of inflammation.  It is likely that these re-
sults reinforce a growing body of research that dual inflam-
matory pathway inhibition may be needed to fully realize the
promise of anti-inflammatory therapy [195].

The class of dual 5-Lox/Cox inhibitors such as Indometacin,
dexamethasone, ER-34122, BW 755C, diclofenac, Tepoxalin
and licofelone has emerged as an effective and well tolerated
therapy that could offer safety advantages over Cox inhibi-
tion alone [196].  These dual inhibitors are tested and found to
be effective in animal models and clinical trials [197, 198].
Tepoxalin was proved to be better than indomethacin in hav-
ing no gastro intestinal toxicity [199 – 201].  Based on various
observations, Tepoxalin have future prospects as preven-
tive and therapeutic drug in colon carcinogenesis.  Licofelone
is a novel dual 5-LOX/COX inhibitor today in phase III clini-
cal development that effectively inhibits the synthesis of
cysteinyl LTs [197, 202, 203].  The observations of the clinical
development of licofelone indicate that this drug also has an
excellent GI profile.

STAT-3  Stat (signal transduction and translation)
proteins, normal constituents of cells activated by tyrosine
kinases, have diverse biological functions [201].  Any aberra-
tions in stat signaling are predicted to have a wide variety of
consequences.  Stat 1, 3 and 5 are observed to be more
strongly associated with human cancers out of the known
stat family members.  Although dysregulated activity of STAT
factors 1, 3 and 5 has been implicated in various cancers, not
many studies have addressed these in the context of CRC.
Experimental and clinical data have revealed the oncogenic
potential of STAT3 through over expression and constitu-
tive activation in a variety of human malignancies, including
leukemia, melanoma, head and neck squamous cell carcinoma,
breast, prostate, ovarian and colorectal carcinoma [198,204 – 209]

(Table 1).  STAT3 is activated by cytokine and growth factor
receptors, several viral or cellular oncogenes, such as src,
fps, polyoma virus middle T-antigen and sis [205, 210].  Cell
transformation by aberrant STAT3 activity involves
upregulation of genes promoting cell cycle progression
(cyclin D1 and c-myc) and/or preventing apoptosis (bcl-xL,
mcl-1, and survivin) [211–214].  These findings make it a suit-
able target for disease intervention.  It is presumed that STAT3
elicits permanent changes in the genetic constitution of the cell
required for the initiation and maintenance of tumorigenesis.
STAT3 plays a vital role in tumor angiogenesis by acting as a
direct transcriptional activator of VEGF [215, 216].    It is identified
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that STAT3 is activated by modulation of both tyrosine phos-
phorylation and lysine acetylation to stimulate cancer cell
growth and metabolism.  These findings help in better tar-
geting of STAT3.  One can target upstream (JAK, SRC, EGFR)
and downstream targets responsible for activation of STAT3.
The results of STAT3 disruption in mouse fibroblasts dem-
onstrate that deletion of STAT3 is not deleterious for normal
functioning of cells [217, 218].  This observation clears the fears
of drastic effects to be normally associated by blocking
STAT3 functioning.  The molecular mechanism of oncogen-
esis by STAT3 is yet to be defined in colon carcinogenesis.
STAT3 protein is involved in mediating cytokine signaling,
which in turn, has a vital role in inflammation of cells.  It is
known in colon cancer that inflammatory cells have power-
ful effects during the early neoplastic process, these cells
promote tumor development, facilitate genomic instability
and promote angiogenesis.  By these actions of activated
STAT3, one might assume that it is playing a vital role in
colon carcinogenesis.  Genetic approaches and also small
molecule inhibitors (antitumor cytokines) might prove to be
better approaches for inhibiting activated STAT3.  Efficacy
studies in animal models are to be carried out to screen vari-
ous naturally occurring anti-inflammatory molecules which
have a promise in inhibition of activated STAT-3 and further
prevention of colon carcinogenesis (Figure 1).  The most
promising compounds from animal models relevant to hu-
man diseases showing no toxicities can be studied further in
human clinical trials.

siRNAs

Small interfering RNAs (siRNAs) are tiny bits of genetic
material that can prevent the translation of genes into pro-
teins — including specific proteins involved in biochemical
reactions that promote cancer and other diseases.  siRNA
interference has emerged as an invaluable tool in biological
research, and could also become a powerful therapeutic
modality because of its broad applicability, specificity and
high efficiency [219–221].  There are many reports on use of
siRNA in silencing a gene of interest in many different
diseases.  including cancers [222].  siRNA approach was found
effective against TGFβ1 and reduced its expression in HCT-
116 colon cancer cells [223].  Treatment with a COX-2 siRNA in
colon cancer cells demonstrated a significant knockdown of
COX2 at the protein level of 57%, as compared to a non-
silencing siRNA control [224].  Down-regulation of endog-
enous levels of COX-2 can be achieved in colon cancer by
siRNA.  This strategy should prove to be a valuable tool in
revealing the specific function of COX-2 in tumorigenesis [224].
RNA-i based technologies have gained popularity by ad-

dressing the ability to knockdown several genes at the same
time, but this can be a disadvantage if considered a specific
knockdown.  siRNA was used to obtain defined combina-
tions of pro- and antiapoptotic gene expression in colon
cancer cells of varying p53 status [225].  siRNA is also used in
elucidating functional role of LPA (Lysophosphatidic acid)
and LPA receptors in colorectal cancer cells [226]. These ob-
servations demonstrate Bcl-2 and LPA receptors accessibil-
ity for siRNA silencing, making specific gene targeting a
very possible approach.  siRNAs targeted against different
cancer related pathways in colon carcinogenesis are tested
in mice successfully, whereas  there are many hurdles needed
to be cleared before it can be implemented in human treatments.
It can be developed as a new treatment tool, provided it can
be delivered to the site of interest, and is able to be assessed
through non-invasive methods, specific siRNA sequence and
mode of delivery.  There are possible toxicities induced by
partial inhibition of homologous genes/function of endog-
enous miRNAs.  If one can overcome the problems, this can
become an attractive therapeutic model for  colon
carcinogenesis.

Micro RNAs–emerging new science as a target
for multiple diseases

MicroRNAs (miRNAs) are short non-coding RNA molecules
that regulate expression of genes by repressing translation
or by cleaving RNA transcripts [227, 228].  These play a crucial
role in cell differentiation/development, proliferation and
apoptosis [229].  Therefore, they are believed to play an im-
portant role in cancer development and can become poten-
tial therapeutic targets.  Each miRNA can target hundreds
of transcripts directly or indirectly [227–230], whereas more than
one miRNA can converge on a single mRNA target [231–235].
Recent studies showed that miRNAs have been deregulated
in various cancers including colon [236–239].  The expression pro-
files of miRNAs can be used for the classification, diagnosis
and prognosis of human malignancies [240].  miRNA expres-
sion is frequently disregulated in cancer cells, and specific
miRNAs are known to regulate both cell-cycle progression
and apoptosis [241–243].  A recent report demonstrates that
miRNAs are important components of the p53 transcriptional
network in HCT116 colon adenocarcinomas cells.  Their ob-
servations suggest an important role for miR-34a in mediat-
ing p53 tumor suppressor function [244].  Mutations in miRNAs
are observed in breast cancer tissue samples and the role of
mutations in miRNAs is still to be elucidated [240].  A number of
molecular studies have shown that colon carcinogenesis
results from an accumulation of epigenetic and genetic
alterations, including activating and inactivating mutations.
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This suggests that alternative genetic events may occur
during colorectal carcinogenesis.  Still, there is no clear un-
derstanding in relating all these events at the molecular level
in colon cancer development.  It is known from a few reports
that colon cancer is associated with altered expression of mi-
RNAs.  Michael et al  reported that the expression of miR-
143 and -145 was consistently reduced at the adenomatous
and cancer stages of colorectal cancer [245].  Later, Bandres et

al  reported the most significantly deregulated mi- RNAs
were miR-31, miR-96, miR-133b, miR-145 and miR-183 by study-
ing the expression of 156 mature miRNAs in a panel of 16
colorectal cancer cell lines and 12 matched pairs of tumor
and non-tumor tissues from patients [239].  In addition, the
expression level of miR-31 was correlated with the stage of
colorectal cancer.  Yukihiro Akao et al, have shown MAPK
transduction proteins, such as MAP3K and MAP4K4, are
possible targets for miR-145 [246].  Because up to hundreds of
target genes may be affected by a single miRNA, as pre-
dicted by bioinformatics approaches and thus, a given miRNA
may target several hundreds of miRNAs that would include
transcripts of oncogenic or anti-oncogenic genes, so, it may
be difficult to determine the oncogenic functions of a given
miRNA in cancer cells.  Rapidly emerging information on
miRNAs as a new science, which is known to regulate a vast
number of genes in maintaining normal crypt, a study is nec-
essary to identify specifically those altered miRNAs related
to specific pathways and to target them to restore the normal
functioning of the colon cells.  Further understanding of the
biological and functional mechanisms of miRNA is needed
to know how miRNA contributes to carcinogenesis.  Target-
ing miRNAs could provide an important diagnostic for pre-
vention/ therapeutic strategy for human colorectal cancer in
the future.

piRNAs

Piwi interacting RNAs (piRNAs) are a new class of small
non-coding RNAs that possess unique long length of nucle-
otides (26 – 31), which differ from other miRNAs and siRNAs.
These are named as piRNAs due to their association with
Piwi proteins, which belong to Argonaute proteins.  These
are found to be present in sperm-producing cells in mammals.
These piRNAs are present during the initiation of meiosis of
sperms and observed to disappear by the time sperm matures.
Hence, it is suggested that these may regulate germ cell
maturations.  It is also said that piRNAs have a possible role
as a type of immune system against transposons.  piRNAs
role in cancer is yet to be elucidated.  Whereas, hiwi gene (a
human member of the piwi family), is known to cause germ

cell malignancy [247].  Also, expression of hiwi in human gas-
tric cancer is associated with proliferating cells [248].  These
correlations may raise the questions of whether these
piRNAs are related to expression of piwi proteins in relation
to cancers.  piRNAs are not yet studied in relation to colon
carcinogenesis.  Very little as been reported about piRNAs,
but the research is occurring at such a speed that a lot more
information may be reported giving many clues by the time
this article appears.

Conclusions

The ultimate goal of chemoprevention is the reduction of
cancer incidence by intervening developmental pathways in
tumor cells which promote growth and metastases of the
tumor. Tumor cells develop/possess multiple pathways of
survival, whereas identification of a particular group of indi-
viduals with alterations in specific pathway and targeting
that pathway is a valid approach.  Screening and develop-
ment of agents which have potential preventive properties
with multi-target suppression is appreciable.  It is important
to determine the non toxic dose by elucidating the mecha-
nisms by which the drug acts in in vivo models.  Clinical stud-
ies are needed to determine whether supplementation of other
molecules to reduce the known toxicity of that drug reliably
rescues from the induced toxicity.  As chemoprevention
involves administering nontoxic agents to otherwise healthy
individuals who may be at increased risk for cancer, agents
with no/minimal temporary side effects have promise of those
being used in chemotherapy.  Observations of alterations in
a particular pathway in specific cancers and identification of
risk groups with aberrations in a particular gene are exploited
for treatment/chemotherapy.  NSAIDs are particularly effec-
tive in patients showing COX-2 expression in preventing
colon cancer, likewise, statin’s are found efficient in choles-
terol related carcinogenesis in which HMG-CoA reductase
is a known target.  Especially inflammatory related molecular
targets are exploited by COX/LOX inhibitors, iNOS inhibitors.
It is observed that hormonal receptors are playing a poten-
tial role in promoting/inhibiting colorectal carcinogenesis for
which ER-β antagonists (SERMs) and RXR agonists
(rexinoids) are employed respectively.  Overall these drugs
are shown to effectively degrade β-catenin, an important
biomarker in colon cancer, even though oligonucleotides
specific against β-catenin are under investigations for clini-
cal implementation.  As most of these pathways are
interlinked, combination modalities hold promise for preven-
tion/treatment of colon cancer.  It is very obvious from avail-
able data that chronic inflammation is a key for colorectal
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carcinogenesis which leads to alterations in various molecu-
lar biomarkers which can be exploited in chemoprevention/
therapy.

The emerging new fields of siRNA, miRNAs and piRNAs
can be used in combination with selective chemotherapeutic
agents in treating colon cancer.  There is hope for develop-
ing new agents/strategies for chemotherapy.  In fact, new
colorectal cancer cases occur each year in 21% out of 1444920
men and women in the United States.  If chemoprevention can
prevent one or even 1000 occurrences of cancer without
complications, it can be deemed successful.  Chemoprevention
has the potential of providing an important means for cancer
risk reduction.
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